Series 2200 "OPTYMA-S"

General

Optyma32-S has been designed in order to complete the Optyma series of valves.
Optyma-S,12.5mm size, integrates all the technical features already developed and implemented on the Optima T \& F such as the integrated electrical connection. Further technical specifications are:

- Flow rate: up to $550[\mathrm{~N} / / \mathrm{min}]$, using the modular base with $\varnothing 8$ quick fitting tube.
- Modular base available with Ø4, Ø6, Ø8 quick fitting tube.
- The solenoid pilots are low consumption and fitted on the same side of the valve.
- Mono and bistable valves have the same dimension.
- Easy and fast assembly on the sub base thanks to the "one screw" mounting solution.
- Possibility to replace a valve without the need of disconnecting the pneumatic pipes.
- Electrical and pneumatic connections positioned on the same side.
- Possibility to operate with different pressures and vacuum.
- Management of 32electrical signals,(16 bi-stable or any combination off mono and bi-stable vales up to max 32 signals).
- The protection grade is IP65 directly integrated in the manifold components.
- The electrical connection is achieved thanks to a 37 pole connector.
- Possibility to integrate with Field Bus modules CANopen®, PROFIBUS DP, DeviceNet, EtherNet/IP, PROFINET IO RT/IRT, EtherCAT®,

Powerlink and Modbus/TCP.
"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001, Pneumatic fluid power-Directional control valves-Measurement of shifting time"

Main characteristics

One size: 12.5 mm thick
Monostable and bistable valves with same dimensions
Modular subbase with two positions
Modular subbases assembled via tie rods
Quick coupling connections directly integrated in sub base
Integrated and optimized electrical connection system.
IP65 protection grade as standard

Construction characteristics

Body	Technopolymer
Operators	Technopolymer
Spacers	NBR
Spacer	Technopolymer
Spools	AISI 303 stainless steel
Springs	AISI 303 stainless steel
Pistons	Technopolymer
Pistonseals	NBR

Functions

SV 5/2 MONOSTABLE SOLENOID-SPRING
SV 5/2 MONOSTABLE SOLENOID-DIFFERENTIAL
SV $5 / 2$ BISTABLE SOLENOID-SOLENOID
SV 5/3 C.C. SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.C.-N.C. ($=5 / 3$ O.C.) SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.O.-N.O. ($=5 / 3$ P.C.) SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.C.-N.O. SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.O.-N.C. SOLENOID-SOLENOID

Technical characteristics

Voltage	$24 \mathrm{VDC} \pm 10 \%$ PNP (NPN and AC on request)
Pilot consumption	0,5 Watt
Pilot working pressure (12-14)	from 2,5 to 7 bar max.
Valve working pressure [1]	from vacuum to 10 bar max.
Operating temperature	from $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Protection degree	IP 65
Life (standard operating conditions)	50000000
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous

Solenoid valves manifold

Series 2200 "OPTYMA-S"

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$2,5 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	550
Responce time according to ISO 12238, activation time (ms)	12
Responce time according to ISO 12238, deactivation time (ms)	20

v VDC PNP
$12=24$ VDCNPN $05=24 \mathrm{VAC}$

SHORT FUNCTION CODE "A"
Weight 67 g

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$ with Base cod. 2244.01. \vee tube $\oslash 4=140$ Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ with Base cod. 2246.01. V tubo $\varnothing 6=400$ Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$ with Base cod. 2246.01. V tubo $\varnothing 8=550$

Coding: 2241.52.00.35.V

$$
05=24 \mathrm{VAC}
$$

SHORT FUNCTION CODE "C"

$$
\text { Weight } 67 \mathrm{~g}
$$

Responce time according to ISO 12238, activation time (ms)
Responce time according to ISO 12238, deactivation time (ms)
Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$ with Base cod. 2244.01. V tube $\oslash 4=140$ Flow rate at 6 bar with $\Delta p=1(\mathrm{~N} / / \mathrm{min})$ with Base cod. 2246.01. V tubo $\varnothing 6=400$ Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ with Base cod. 2246.01. V tubo $\oslash 8=550$

Solenoid-Solenoid 5/3 (Closed centres)
Coding: 2241.53.31.35.V

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$2,5 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ (NI $/ \mathrm{min})$	400
Responce time according to ISO 12238 , activationtime (ms)	15
Responce time according to ISO 12238 , deactivationtime (ms)	20

VOLTAGE

(v) $02=24 \mathrm{VDCPNP}$
$12=24$ VDC NPN
$05=24 \mathrm{VAC}$
SHORTFUNCTIONCODE"E"
Weight 83 g

Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$ with Base cod. 2244.01. \vee tube $\varnothing 4=140$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$ with Base cod. 2246.01. V tube $\varnothing 6=300$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ with Base cod. 2246.01. V tubo $\varnothing 8=400$

Solenoid-Solenoid 2x3/2

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$\geq 3+(0,2 x$ Inlet pressure $)$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ ($\mathrm{Nl} / \mathrm{min}$)	420
Responce time according to ISO 12238, activation time (ms)	15
Responce time according to ISO 12238, deactivation time (ms)	25
Shifting time of pneumatic directional control valves or moving p	re measured in accordance to ISO 12238:2001

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Coding: 2241.62.©.35.V

FUNCTION | 44 = NC-NC (5/3 Open centres) |
| :--- | $45=$ NC-NO (normally

©
closed-normally open)
$54=$ NO-NC (normally
open-normally closed) 55 = NO-NO (5/3 Pressured centres)
VOLTAGE
(V) $02=24$ VDC PNP
$12=24 \mathrm{VDCNPN}$ $05=24 \mathrm{VAC}$
SHORTFUNCTIONCODE
NC-NC (5/3 Open centres)="F"
NC-NC (5/3 Open centres)="F"
NO-NO (5/3 Pressured centres)="G"
$\mathrm{NO}-\mathrm{NO}(5 / 3$
$\mathrm{NC}-\mathrm{NO}=" \mathrm{H}$
NC-NO="H"
NO-NC="l"
Weight 75 g

Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ with Base cod. 2244.01. \varnothing tube $\varnothing 4=140$ Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$ with Base cod. 2246.01. D tubo $\varnothing 6=360$ Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ with Base cod. 2246.01. V tubo $\varnothing 8=420$

Right Endplates
Operational characteristics Fluid Filtered air. No lubrication needed, if applied it shall be continuous Working pressure (bar) From vacuum to 10 Pressure range (bar) $2,5 \div 7$ Temperature ${ }^{\circ} \mathrm{C}$ $-5 \div+50$

Coding: 2240.03.©

ELECTRICALCONNECTION
C $00=$ Electrical connection $\mathbf{2 5 P}=\quad$ Connectors 25 poles

Closing plate

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

Intermediate Inlet/Exhaust module
Coding: 2240.10

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

Fluid

Weight 75 g
SHORT FUNCTION CODE "3" (Monostable) Opened ports SHORT FUNCTION CODE "33" (Monostable) Ports 1-5 separated SHORT FUNCTION CODE "34" (Monostable) Ports 1-3 separated SHORT FUNCTION CODE "35" (Monostable) Port 5 separated SHORT FUNCTION CODE "36" (Monostable) Separated ports SHORT FUNCTION CODE "37" (Monostable) Port 1 separated SHORT FUNCTION CODE "38" (Monostable) Ports 3-5 separated SHORT FUNCTION CODE "39" (Monostable) Port 3 separated

SHORT FUNCTION CODE "4" (Bistable) Opened ports SHORT FUNCTION CODE "43" (Bistable) Ports $1-5$ separated SHORT FUNCTION CODE "44" (Bistable) Ports 1-3 separated SHORT FUNCTION CODE "45" (Bistable) Port 5 separated SHORT FUNCTION CODE "46" (Bistable) Separated ports SHORT FUNCTION CODE "47" (Bistable) Port 1 separated SHORT FUNCTION CODE "48" (Bistable) Ports 3-5 separated SHORT FUNCTION CODE "49" (Bistable) Port 3 separated

2246. ©

Weight 75 g
SHORT FUNCTION CODE "5" (Monostable) Opened ports SHORT FUNCTION CODE "53" (Monostable) Ports $1-5$ separated SHORT FUNCTION CODE "54" (Monostable) Ports 1-3 separated SHORT FUNCTION CODE "55" (Monostable) Port 5 separated SHORT FUNCTION CODE "56" (Monostable) Separated ports SHORT FUNCTION CODE "57" (Monostable) Port 1 separated SHORT FUNCTION CODE "58" (Monostable) Ports 3-5 separated SHORT FUNCTION CODE "59" (Monostable) Port 3 separated

SHORT FUNCTION CODE "6" (Bistable) Opened ports SHORT FUNCTION CODE "63" (Bistable) Ports 1-5 separated SHORT FUNCTION CODE "64" (Bistable) Ports 1-3 separated SHORT FUNCTION CODE "65" (Bistable) Port 5 separated SHORT FUNCTION CODE "66" (Bistable) Separated ports SHORT FUNCTION CODE "67" (Bistable) Port 1 separated SHORT FUNCTION CODE "68" (Bistable) Ports 3-5 separated SHORT FUNCTION CODE "69" (Bistable) Port 3 separated

2248.EV

Weight 75 g
SHORT FUNCTION CODE "7" (Monostable) Opened ports SHORT FUNCTION CODE "73" (Monostable) Ports $1-5$ separated SHORT FUNCTION CODE "74" (Monostable) Ports 1-3 separated SHORT FUNCTION CODE "75" (Monostable) Port 5 separated SHORT FUNCTION CODE "76" (Monostable) Separated ports SHORT FUNCTION CODE "77" (Monostable) Port 1 separated SHORT FUNCTION CODE "78" (Monostable) Ports 3-5 separated SHORT FUNCTION CODE "79" (Monostable) Port 3 separated

SHORT FUNCTION CODE "8" (Bistable) Opened ports SHORT FUNCTION CODE "83" (Bistable) Ports $1-5$ separated SHORT FUNCTION CODE "84" (Bistable) Ports 1-3 separated SHORT FUNCTION CODE "85" (Bistable) Port 5 separated SHORT FUNCTION CODE "86" (Bistable) Separated ports SHORT FUNCTION CODE "87" (Bistable) Port 1 separated SHORT FUNCTION CODE "88" (Bistable) Ports 3-5 separated SHORT FUNCTION CODE "89" (Bistable) Port 3 separated

Solenoid valves manifold

Polyethylene Silencer Series SPL-R
Coding: SPLR.D

	TUBE DIAMETER
	$6=6 \mathrm{~mm}$
	$10=10 \mathrm{~mm}$

Diaphragm plug
Coding: 2230.17

Tie-rod M3
Coding: 2240.KD. 00

Tie-rod M3

The Kit includes 3 pieces

Coding: 2240.KT.P

N. POSITIONS	N. POSTIONS
$02=$ Nr. 2 Positions	$04=$ Nr. 4 Positions $06=$ Nr. 6 Positions $08=$ Nr. 8 Positions $10=$ Nr. 10 Positions $12=$ Nr. 12 Positions $14=\mathrm{Nr} .14$ Positions

(P) $16=$ Nr. 16 Positions
$18=$ Nr. 18 Positions
$20=\mathrm{Nr} .20$ Positions
$22=\mathrm{Nr} .22$ Positions
$24=$ Nr. 24 Positions
$26=$ Nr. 26 Positions
$28=$ Nr. 28 Positions
$30=$ Nr. 30 Positions $32=$ Nr. 32 Positions

Cable complete with connector, 25 Poles IP65

Coding: 2300.25.L.C

Cable complete with connector, 37 Poles IP65

Coding: 2400.37.D.C

	CABLELENGTH
	$03=3$ meters
	$05=5$ meters
	$10=10$ meters
	FUNCTION
	$31=$ Closed centres
	$32=$ Open centres
	$33=$ Pressured centres

Cable complete with connector, 25 Poles IP65

General :

Using the 2240.03.25P output terminal it is possible to make any electrical signals not used by valves available on a 25 sub-D female connector at the right end of the manifold.
It is possible to then join a multi-core cable to link to the next manifold, or connect directly to one or two I/O modules.
The I/O modules can accept input or output signals, depending upon what is connected.

Please note: If the manifold is connected by a multi-core connection, each connection can be used as either an input or an output, while if the manifold is connected to a serial node the connections can only be used as an output.

It is possible to connect the manifold to up to two I/O modules.
Each I/O module includes 8 diagnostic LEDs which indicate the presence of an Input / Output signal for each connector.

Please note: For an LED to function, a signal of at least +15VDC must be present on pin 4 of the connector. If this signal is lower, the LED will not light, this does not compromise the normal Input / Output function of the unit.

Input features:

Each connection can accept either two wire (switches, magnetic switches, pressure switches, etc.) or three wire connections (photocells, electronic end of stroke sensors, etc.) if +24 VDC is required on at Pin 1 of each connector, it is possible to provide this via the through-line pin of the multi-pole connector.
I.E:

Pin 25 of the 25 pin multi-pole connector (code 2240.02.25P or 2240.12.25P)
Pin 36-37 of the 37 pin multi-pole connector (code 2240.02.37P or 2240.12.37P)

Output features:

1
Attention: The output connections are not protected against short-circuit. Please pay attention when wiring (avoid Pin 4 being connected to Pin 3 or Pin 1).

	Model	2240.08S
	Case	Reinforced technopolymer
	I/O Connector	M8 connector 3 poles female (IEC 60947-5-2)
	PIN 1 voltage (connector used as Input)	by the user
	PIN 4 voltage diagnosis	Green Led
	Node consumption (Outlets excluded)	7 mA per each LED with 24 VDC signal
	Outlets voltage	+23,3 VDC (serial) /by the user (multipolar)
	Input voltage	Depend by the using
	Maximum outlet current	100 mA (serial) / 400 mA (multipolar)
	Maximum Input/Output	8 per module
	Multiconnector max. Current	100 mA
	Connections to manifold	Direct connection to 25 poles connector
	Maximum n. of moduls	2
	Protection degree	IP65 when assembled
	Ambient temperature	from -0° to $+50^{\circ} \mathrm{C}$

SUB-D TYPE 25 POLE MALE CONNECTOR

Connection modes:

The I/O module changes it is operation depending on the way the manifold is controlled. There are two possible modes:
A) Control via multi-pole connection
B) Control via fieldbus

A) Control via multi-pole :

M8 connector used as Input:
M8 connector used as Output:

\triangle
Attention: Voltage applied to each connector is passed to multi-pole connector pin.

Output voltage will the same as is applied at the multi-pole connector pin.
The maximum output current depends upon the power unit used, but we recommend no more than 250 mA .

Attention : Optyma 32-S solenoid valve manifolds permit up to 22 electrical signals that are not used by manifolds to be made available: these signals can be managed by another manifold and / or by I/O modules.
The I/O module will manage these unused signals. Connections that are not managing useful signals will remain unconnected.

Please note: Optyma 32-S solenoid valve manifolds manage up to 32 signals. If the manifold uses more than 24 signals the I / O module will manage only the remainder. Connections that are not managing useful signals will remain unconnected.

B) Control via fieldbus:

With this kind of control the I/O module can only be used as an output. Pin 1 of each connector is not connected. The output voltage will be 0.7 V lower than that applied to Pin 4 of the connector.
The maximum output current for each output is 100 mA . Te correspondence between control byte and each single output depends on how many electrical signals are used by the manifold and by the relative position of the I/O module.

Electrical connection

The electrical connection is made using a 37 pin connector and can manage up to 32 electrical signals. Alternatively a 25 pin connector can be used which is suitable for up to 22 electrical signals. The distributions of the electrical signals between sub-bases achieved thanks to a dedicated electrical connector positioned in each sun-base which diverts the signals needed to operate the solenoid pilots of the valve mounted on the sub-base and passing unused signals forward to the next base.

The Optyma-S sub-bases are designed to carry two valves and are available in the following configurations:

Sub-base configurations	Signals used for the single position	Total number of used signal
Sub-base for 2 bistable valves	2 signals used for the first position	$\mathbf{4}$
Sub-base for 2 signals used for the second position	1 signal used for the first position	

Sub-base for 2 bistable valves

On the sub base for 2 bistable valves the first electrical signal is used to actuate the solenoid pilot on side 14 of the first position, the second signal is used to actuate the solenoid pilot on side 12 of the first position. Each sub base uses 4 electric signals. The same layout applies to the following position therefore the third signal is used to actuate the solenoid pilot on side 14 of the second position and the fourth signal is used to actuate the solenoid pilot on side 12 of the second position.
The remaining signals are transferred downstream.
On a bistable sub base it is possible to mount both bistable or monostable valves (in the second case 1 electrical signal for each valve is wasted). This solutions enables the user to change the manifold layout without the need to re-configure the output correspondence on the PLC. The use of bistable sub-bases reduces the maximum number of valves that can be mounted on the manifold: If the 37 pole connector is used the maximum number of valves is 16 If the 25 pole connector is used the maximum number of valves is 10 .

Sub-base for 2 monostable valves

On the sub base for 2 monostable valves the first electrical signal is used to actuate the solenoid pilot on side 14 of the first position, the second signal is used to actuate the solenoid pilot on side 12 of the second position. Each sub base uses 2 electric signals.
The remaining signals are transferred downstream. On a monostable sub base it is possible to mount only monostable valves (shoud a bistable valve be mounted on a monostable sub base it will not be possible to actuate the solenoid pilot on side 12). This solutions enables the user to maximise the manifold lay out using all the electrical signals available.

If the 37 pole connector is used the maximum number of valves is 32
If the 25 pole connector is used the maximum number of valves is 22

Note:

Monostable valves, which are fitted with only one solenoid pilot can be mounted on both monostable or bistable sub bases.
Bistable valves , $5 / 3 ; 2 \times 3 / 2 ; 2 \times 2 / 2$, which are fitted with 2 solenoid pilots and therefore always use two electrical signals must always be mounted on bistable subbases.

Additional exhaust and air supply modules:

The Additional exhaust and air supply module is fitted with a dedicated electrical connector which does not use any electric signal but simply carries forward all signals which have not been used by the valves mounted before it.
This enables its use in any position of the manifold.

Unused electrical signals

The electrical signals which have not been used in the manifold can be made available by using the end plate fitted with the 25 pole connector.
The number of electric signals available depends on the type of connector mounted on the inlet plate and on the number of signals used in the manifold:

> 37 pole Inlet connector: N. of outputs $=32$ - used signals (max 22) 25 pole Inlet connector : N. of outputs $=22$ - used signals

Here are some examples of possible configurations and the corresponding pin layout both on the inlet and end plate :

INLET ELECTRIC CONNECTIONS

SUB-D 25 POLE MALE CONNECTOR

OUTLET ELECTRIC CONNECTIONS (IF PRESENT)

SUB-D 25 POLE FEMALE CONNECTOR

$1-22=$ Solenoid valves signals
$23-24=$ GND
$23-24=$ GND
$25=$ Through line

37 PIN Connector correspondence for valves assembled on mixed bases

PIN 1 = PILOT 14 SV POS. 1 PIN 2 = PILOT 12 SV POS. 1 PIN 3 = PILOT 14 SV POS. 2 PIN 4 = PILOT 12 SV POS. 2 PIN 5 = PILOT 14 SV POS. 3 PIN 6 = PILOT 14 SV POS. 4 PIN 7 = PILOT 14 SV POS. 6 PIN $8=$ NOT CONNECTED PIN 9 = NOT CONNECTED PIN $10=$ NOT CONNECTED PIN 11 = PILOT 14 SV POS .8 PIN $12=$ PILOT 12 SV POS .8 PIN $13=$ NOT CONNECTED PIN 14 = NOT CONNECTED PIN $15=$ PILOT 14 SV POS. 10 PIN $16=$ NOT CONNECTED

37 PIN Connector correspondence for manifold mounted on bases for bistable valves

PIN 1 = PILOT 14 SV POS. 1 PIN 2 = PILOT 12 SV POS. 1 PIN 3 = PILOT 14 SV POS. 2 PIN $4=$ PILOT 12 SV POS. 2 PIN 5 = PILOT 14 SV POS 3 PIN 6 = NOT CONNECTED PIN 7 = PILOT 14 SV POS. 4 PIN 8 = NOT CONNECTED PIN 9 = PILOT 14 SV POS. 6 PIN $10=$ NOT CONNECTED PIN $11=$ NOT CONNECTED PIN $12=$ NOT CONNECTED PIN 13 = PILOT 14 SV POS. 8 PIN 14 = PILOT 12 SV POS .8 PIN $15=$ NOT CONNECTED PIN 16 = NOT CONNECTED PIN 17 = PILOT 14 SV POS. 10 PIN $18=$ NOT CONNECTED PIN $19=$ NOT CONNECTED PIN 20 = NOT CONNECTED

37 PIN Connector correspondence for manifold for 32 position manifold with monostable valves on double bases

From the top

DIN rail fixing

Maximum possible size
According to valves used

Manifold assembly

Min. torque moment : 2 Nm
Max. torque moment: $2,5 \mathrm{Nm}$

Manifold Layout configuration

	LEFT ENDPLATE		
MULTIPOINT CONNECTION		RIGHT ENDPLATE	I/O MODULE
$\mathrm{MP}=\mathrm{PNP} 24 \mathrm{~V}$ DC	A3 $=37$ poles - Self feeding		M8
$\begin{aligned} & \mathrm{MN}=\mathrm{NPN} 24 \mathrm{VDC} \\ & \mathrm{MA}=24 \mathrm{VAC} \end{aligned}$	$\mathrm{E} 2=25$ poles - External feeding $\mathrm{E} 3=37$ poles - External feeding	$\begin{aligned} & \mathrm{U0}=\text { Closed } \\ & \mathrm{U} 2=25 \text { Poles } \end{aligned}$	(Requires 25 poles right endplate)

SUB-BASE TYPE

$3=2$ Position Monostable sub base ø4
(2 electric signal used)
$4=2$ Position Bistable sub base $\varnothing 4$ (4 electric signals used)
$5=2$ Position Monostable sub base ø6 (2 electric signal used)
$6=2$ Position Bistable sub base ø6
(4 electric signals used)
$7=2$ Position Monostable sub base ø8 (2 electric signal used)
$8=2$ Position Bistable sub base $\varnothing 8$
(4 electric signals used)

SUB-BASE VARIANTS

EMPTY $=$ No variants (SUB-BASE STANDARD)
$3=$ Diaphragm plug on pipe 1 and 5
4 = Diaphragm plug on pipe 1 and 3
5 = Diaphragm plug on pipe 5
$6=$ Diaphragm plug on pipe 1,3 and 5
$7=$ Diaphragm plug on pipe 1
$8=$ Diaphragm plug on pipe 3 and 5
$9=$ Diaphragm plug on pipe 3

VALVES TYPE

A $=5 / 2$ Solenoid - Spring
$B=5 / 2$ Solenoid - Differential
$C=5 / 2$ Solenoid - Solenoid
$E=5 / 3 C C$ Solenoid - Solenoid
$F=2 \times 3 / 2$ NC-NC ($=5 / 3 O C$)
Solenoid - Solenoid
$\mathrm{G}=2 \times 3 / 2 \mathrm{NO}-\mathrm{NO}(=5 / 3 \mathrm{PC})$
Solenoid - Solenoid
$H=2 \times 3 / 2$ NC-NO
Solenoid - Solenoid
$I=2 \times 3 / 2$ NO-NC
Solenoid - Solenoid
$\mathrm{T}=$ Free valve space plug

ACCESSORIES

$\mathrm{W} 00=$	Intermediate supply \& exhaust module
0X0 =	Diaphragm plug on pipe 1
OOY =	Diaphragm plug on pipeE 3
Z00 =	Diaphragm plug on pipe 5
OXY =	Diaphragm plug on pipe 1 \& 3
ZX0 =	Diaphragm plug on pipe 5 \& 1
ZOY =	Diaphragm plug on pipe 5 \& 3
ZXY =	Diaphragm plug on pipe 5,1 \& 3

NOTE:

While configuring the manifold always be careful that the maximum number of electrical signals available is 32
The use of monostable valve mounted on a bistable base (2 electrical signals occupied for each position) causes the loss of one electric signal.
In this case the monostable valve can be replaced by a bistable valve without reconfiguring the PLC.
The diaphragms plugs are used to intercept the conduits $1,3 \& 5$ of the base.
Should one or more conduits be cut more than one time it is necessary to add the relevant intermediate Supply/Exhaust module.

Series 2200 OPTYMA-S solenoid valve manifolds managed by multipoint connection are "well tried components"

V1	Well-tried component	-
B $_{\text {10d }}$	50.000 .000	-

- The product is a well-tried product for a safety-related application according to ISO 13849-1.
- The relevant basic and well-tried safety principles according ISO 13849-2 for this product are fulfilled.
- The suitability of the product for a precise application must be verified and confirmed by the user.

General:

CANopen ${ }^{\oplus}$ module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S.
CANopen ${ }^{\circledR}$ module recognizes automatically the presence of the Input modules on power on.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus CANopen ${ }^{\circledR}$ is possible via 2 M12 5P male - female circular connectors; these two are connected in parallel and according to CiA Draft Recommendation 303-1 (V. 1.3:30 December 2004).
Transmission speed can be set by 3 dip-switches.
The node address can be set by 6 dip-switches using BCD numeration.
The module includes an internal terminating resistance that can be activated by a dip-switch.

Scheme / Overall dimensions and I/O layout :

General:

DeviceNet module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.

Scheme / Overall dimensions and I/O layout :

General:

PROFIBUS DP module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code). The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S.
PROFIBUS DP module recognizes automatically the presence of the Input modules on power on. Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus PROFIBUS DP is possible via 2 M12 type B 5P male - female circular connectors; these two are connected in parallel and according to PROFIBUS Interconnection Technology (Version 1.1 : August 2001).
The node address can be set using BCD numeration: 4 dip-switches for the units and 4 dipswitches for the tens.
The module includes an internal terminating resistance that can be activated by a dip-switch.

Scheme / Overall dimensions and I/O layout :

General:

EtherCAT ${ }^{\circledR}$ module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S.
The EtherCAT ${ }^{\circledR}$ module, regardless the number of Input module connected, reports to have connected 4 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus EtherCAT ${ }^{\text {® }}$ is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.
Note: 5700 series has a different configuration file from series 5600 .

Scheme / Overall dimensions and I/O layout :

General:

PROFINET IO RT module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S.
The PROFINET IO RT module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus PROFINET IO RT is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

NETWORK

 connectors

M12 4P FEMALE

M12 4P FEMALE

PIN	SIGNAL	DESCRIPTION
1	TX +	Ethernet Transmit High
2	RX +	Ethernet Receive High
3	TX-	Ethernet Transmit Low
4	RX-	Ethernet Receive Low

Model	5722.32 S.PN
Specifications	PROFINET IO RT/IRT
Case	Reinforced technopolymer
Power supply connection	M12 4P male connector (IEC 60947-5-2)
Power supply voltage	+24 VDC $+/-10 \%$
Node consumption (without inputs)	400 mA
Power supply diagnosis	Green LED PWR / Green LED OUT
PNP equivalent outputs	+24 VDC $+/-10 \%$
Maximum current for each output	100 mA
Maximum output number	32
Max output simultaneously actuated	32
Network connectors	2 M12 4P female connectors Type D (IEC 61076-2-101)
Baud rate	100 Mbit/s
Addresses, possible numbers	As an IP address
Max nodes in net	As an Ethernet Network
Maximum distance between 2 nodes	100 m
Bus diagnosis	1 green and 1 red LED for status + 4 LEDs for link \& activity
Configuration file	Available from our web site: http://www.pneumaxspa.com
IP protection grade	IP65 when assembled
Temperature range	From 0° to $+50^{\circ} \mathrm{C}$

General:

EtherNet/IP module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S
The EtherNet/IP module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus EtherNet/IP is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

General:

Powerlink module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S.
The Powerlink module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus Powerlink is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General:

Modbus/TCP module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S.
The Modbus/TCP module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus Modbus/TCP is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General:

IO-Link module is directly integrated on Optyma-S solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-S solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5222.08S.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Valve power supply will be provided through an external M12, 5 poles, A type connector, directly through the communication connector for Class B port option.
IO-Link module support the IO-Link communications speed COM2. IODD configuration files will be provided by Pneumax.

Scheme / Overall dimensions and I/O layout :

CLASS B connectors

General:

Modules have 8 connectors M8 3P female.
The Inputs are PNP equivalent $24 \mathrm{VDC} \pm 10 \%$.
To each connector it is possible to plug both 2 wires Inputs (switches, magnetic switches pressure switches, etc) or 3 wires Inputs (proximity, photocells, electronic sensors, etc).
The maximum current available for all 8 Inputs is 300 mA .
Each module includes a 300 mA self-mending fuse. If a short circuit or a overcharge (overall current $>300 \mathrm{~mA}$) occur the safety device acts cutting the 24 VDC power supply to all M8 connectors on the module and switching off the green LED PWR. Any other Input module connected to the node will remain powered and will function correctly.
Once the cause of the fault disappears the green LED PWR lights up indicating the ON state and the node will re-start to operate.
The maximum number of Input modules supported is 4 .

Scheme / Overall dimensions and I/O layout :

Module 2 Module 1

Module 4 Module 3 Module 2 Module 1

Manifold Layout configuration with serial systems
32 OUT VERSION
C3 = CANopen ${ }^{\circledR}$ 32OUT
D3 = DeviceNet 32OUT
P3 = PROFIBUS 32OUT
A3 = EtherCAT ${ }^{\circledR}$ 32OUT (Series 5700)
I3 = EtherNet / IP 32OUT
N3 = PROFINET IO RT 32OUT
L3 = Powerlink 32OUT
M3 = Modbus/TCP 32OUT
K3 = IO-Link 32OUT

RIGHT ENDPLATE

U0 = Closed
$\mathrm{U} 2=25$ Poles
INPUT MODULES
A = No module
D1 = 8 M8 digital inputs
module

3 = DeviceNet 320UT P3 = PROFIBUS 32OUT $\mathrm{A} 3=\mathrm{EtherCAT}^{\circledR}$ 32OUT (Series 5700) 3=EtherNet / IP 320 N3 = PROFINET IO RT 32OUT M3 = Modbus/TCP 32OUT K3 = IO-Link 32OUT

VALVES TYPE
A $=5 / 2$ Solenoid - Spring $B=5 / 2$ Solenoid - Differential $C=5 / 2$ Solenoid - Solenoid $E=5 / 3 C C$ Solenoid - Solenoid
$\mathrm{H}=2 \times 3 / 2 \mathrm{NC}-\mathrm{NO}$
Solenoid - Solenoid
$1=2 \times 3 / 2$ NO-NC
Solenoid - Solenoid
$\mathrm{T}=$ Free valve space plug

ACCESSORIES

$\begin{cases}\text { WOO }= & \begin{array}{l}\text { Intermediate supply } \\ \text { \& exhaust module }\end{array} \\ \mathbf{O X O}= & \begin{array}{l}\text { Diaphragm plug } \\ \text { on pipe 1 }\end{array} \\ \mathbf{O O Y}=\begin{array}{l}\text { Diaphragm plug } \\ \text { on pipeE 3 } \\ \text { Diaphragm plug } \\ \text { on pipe 5 }\end{array} \\ \mathbf{Z O O}=\begin{array}{l}\text { Diaphragm plug } \\ \text { on pipe 1 \& 3 }\end{array} \\ \text { ZXO }=\begin{array}{l}\text { Diaphragm plug } \\ \text { on pipe 5 \& 1 } \\ \text { Diaphragm plug } \\ \text { on pipe 5 \& 3 } \\ \text { Diaphragm plug } \\ \text { on pipe 5,1 \& 3 }\end{array} \\ \text { ZOY }=\end{cases}$

NOTE:

While configuring the manifold always be careful that the maximum number of electrical signals available is 32
The use of monostable valve mounted on a bistable base (2 electrical signals occupied for each position) causes the loss of one electric signal.
In this case the monostable valve can be replaced by a bistable valve without reconfiguring the PLC.
The diaphragms plugs are used to intercept the conduits $1,3 \& 5$ of the base.
Should one or more conduits be cut more than one time it is necessary to add the relevant intermediate Supply/Exhaust module.

