Solenoid valves manifold

Series 2500 "OPTYMA-T"

Series 2500 "OPTYMA-T"

General

With the introduction of the " T " configuration of solenoid valves with integrated pneumatic connections fitted directly on the sub base the 2500 series (called OPTYMA) is now richer than ever.
Many technical features make the new product interesting:

- Flow rate of $800 \mathrm{NI} / \mathrm{min}$
- Tie rod system to hold the sub bases together
- All pneumatic connections (push-in) on the same side of the manifold
- Quick mounting of the valve to the base using just one screw
- Possibility to replace the valve without the need to disconnect the connections
- Possibility to use different pressures along the manifold (including vacuum)
- IP65 environmental protection
- Electrical connection directly integrated into the base, 32 electrical signals available (can be used to build up a manifold of 32 monostable valves, 16 bistable valves or any combination within that limit).
- The electrical connection is made via 37 pin D-SUB connector.
- It is also available a 25 -pole connector that is able to manage a maximum number of 22 electrical signals.

Possibility to integrate with Field Bus modules CANopen®, PROFIBUS DP, DeviceNet, EtherNet/IP, PROFINET IO RT/IRT, EtherCAT®, Powerlink and Modbus/TCP.
Possibility to connect input modules, even on the base that does not have the Field Bus module. Large use of technopolymer material reduces the overall weight of the manifold.
"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001, Pneumatic fluid power-Directional control valves-Measurement of shifting time"

Main characteristics

Integrated and optimized electrical connection system.
IP65 protection degree.
Only one 19 mm size
Electrical line connections on one side
Monostable and bistable solenoid valves with the same size dimensions.
Easy and fast manifold assembly - tie rod system to hold the sub bases together
Quick coupling connections directly integrated in sub base
Easy and fast manifold assembling.

Construction characteristics

Body	Technopolymer
Operators	Technopolymer
Spacers	NBR
Spacer	Technopolymer
Spools	Nickel - plated steel / Technopolymer
Springs	AlSI302 stainless steel
Pistons	Technopolymer
Pistonseals	NBR

Functions

SV 5/2 MONOSTABLE SOLENOID-SPRING
SV 5/2 MONOSTABLE SOLENOID-DIFFERENTIAL
SV 5/2 BISTABLE SOLENOID-SOLENOID
SV 5/3C.C. SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.C.-N.C. (=5/3 O.C.) SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.O.-N.O. (=5/3 P.C.) SOLENOID-SOLENOID
SV 2x3/2 N.C.-N.O. SOLENOID-SOLENOID

Technical characteristics

Voltage	$24 \mathrm{VDC} \pm 10 \%$ PNP (NPN and AC on request)
Pilot consumption	1,3 Watt
Pilot working pressure (12-14)	From 3 to 7 bar max.
Valve working pressure [1]	from vacuum up to 10 bar
Operating temperature	$-5^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}$
Protection degree	IP65
Life (standard operating conditions)	50000000
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous

Solenoid-Spring

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$3 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	750
Responce time according to SO 12238 , activation time (ms)	14
Responce time according to ISO 12238 , deactivation time (ms)	40

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Coding: 2541.52.00.39.V
VOLTAGE

- $02=24 \mathrm{VDCPNP}$
$12=24$ VDC NPN $05=24 \mathrm{VAC}$
Weight 129 g
SHORT FUNCTION CODE "A"

Solenoid-Differential

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pressure range (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \div 7$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	$-5 \div+50$
Responce time according to ISO 12238, activation time (ms)	750
Responce time according to ISO 12238, deactivation time (ms)	20

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Solenoid-Solenoid

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pressure range (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \div 7$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	$-5 \div+50$
Responce time according to ISO 12238 , activation time (ms)	750
Responce time according to ISO 12238, deactivation time (ms)	10

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Coding: 2541.52.00.36.V

VOLTAGE
(V) $02=24 \mathrm{VDCP}$ PNP
$12=24 \mathrm{VDCNPN}$ $05=24 \mathrm{VAC}$

Weight 126 g

 SHORTFUNCTION CODE "B"Coding: 2541.52.00.35.V

\vee	VOLTAGE
	$02=24$ VDC PNP
	$\mathbf{1 2}=24$ VDC NPN
	$05=24$ VAC

Weight 134 g

Solenoid-Solenoid 5/3

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$3 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	600
Responce time according to ISO 12238, activation time (ms)	15
Responce time according to ISO 12238 , deactivation time (ms)	20

Responce time according to ISO 12238, deactivation time (ms)
Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Solenoid-Solenoid 2x3/2

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pressure range (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \div 7$
Flow rate at 6 bar with $\Delta \mathrm{p}=1$ (NI/ min)	$-5 \div+50$
Responce time according to ISO 12238, activation time (ms)	700
Responce time according to ISO 12238 , deactivation time (ms)	15

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

"Example: If inlet pressure is set at 5 bar then pilot pressure must be at least $\mathrm{Pp}=2,5+(0.2 * 5)=3,5 \mathrm{bar} "$

Coding: 2541.53.31.35.V
VOLTAGE
(v) $02=24$ VDCPNP
$12=24 \mathrm{VDCNPN}$ $05=24$ VAC
Weight 132 g
SHORTFUNCTION CODE "E"

Right Endplates
Coding: 2540.03.C

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

ELECTRICAL CONNECTION
C) $\mathbf{0 0}=$ Electrical connection 25P $=$ Connectors 25 poles Conduit 82/84=DO NOT PRESSURIZE,

Weight 274 g

Left Endplates	
	Operational characteristics
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$3 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

Coding: 2540.V.C

Weight 300 g

2540.02.©

Left Endplates-External feeding base: $12 / 14$ divided from conduct 1

Weight 300 g
2540.12.C

Left Endplates - Self-feeding Base: 12/14 connected with conduct 1

Closing plate
Coding: 2530.00
SHORT FUNCTION CODE "T"

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

Modular base
Fluid Operational characteristics
Fluid
Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)
Temperature ${ }^{\circ} \mathrm{C}$

Coding: 254C.01V
WORKING PORTS SIZE $1=\mathrm{G} 1 / 8^{n}$ female straight cartridge
(C) 4 = Cartridge \varnothing_{4} $6=$ Quick fitting tube $\varnothing 6$ 8 = Quick fittingtube θ_{8} VERSION
(V) $\mathbf{M}=$ for Monostable SV

B $=$ for Bistable SV

Intermediate Inlet/Exhaust module
Operational characteristics Fluid Filtered air. No lubrication needed, if applied it shall be continuous Working pressure (bar) From vacuum to 10 Temperature ${ }^{\circ} \mathrm{C}$ $-5 \div+50$

Weight 115 g
SHORT FUNCTION CODE "W"

Weight 10 g
The Kit includes 4 pieces

Set with single tie-rod (max. 32 Solenoid valves)

Set with tie-rod, more extension adding a valve

General :

Each Optyma-T manifold lets to manage 32 command signals for the valves. Optyma-T serial nodes (CANopen ${ }^{\circledR}$, DeviceNet, PROFIBUS DP, EtherCAT ${ }^{\circledR}$, PROFINET IO RT, EtherNet/IP and Powerlink) have a single pin for the power supply of the solenoid valves. So if you want to interrupt the power supply of one valve it is necessary to interrupt all the valves. The additional power supply module lets to interrupt at the same time the first 2 available command signals for the valves after the module itself. The additional power supply module is particularly useful also when you use control signals that block the valves. This application is effective both with serial management and multi-pole connection of the manifolds.
This module is inserted directly into the Optyma-T solenoid valves manifold.

Ordering code

2540.10.2A

PIN	DESCRIPTION
1	+24 VDC
4	NOT CONNECTED
3	GND

This module uses an external power supply (+24VDC) to manage the solenoid valves.

The output signal from serial node / multi-pole connection is used as command signal: when it is high the +24 VDC will be present at the module output.

If you want to cut off the power supply to a group of 2 valves it is sufficient to take away the +24 VDC provided to the module by the M8 connector.

Please note: It is possible to use more modules to interrupt all the command signals,
simply by inserting them before the signals to interrupt and after the signals already interrupted.

Usage examples:

EXAMPLE 1:

Manifold of 12 monostable valves on which you want to interrupt signals 7-8

Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves. Please note: the first 2 monostable of these are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.

EXAMPLE 2:

(1) (2) (3) (4) (5) (6) 17 (8), (9) (10) (11) (12)

Manifold of 12 monostable valves on which you want to interrupt signal 9

Assembly:

- 8 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 1 monostable valve (interruptible),
- 1 closing plate mounted on a monostable base,
- 3 monostable valves (work correctly managed directly by the corresponding command signals).

Please note: Each additional power supply module interrupts always 2 electrical signals.
If you need to interrupt less than 2 signals you can:

- assemble the valves to interrupt in the last positions of the manifold, so you don't need to worry about the interrupted exceeding signals; - use a bistable base and mount a monostable valve (for each signal less than the 2 standard);
- use a monostable base and mount a closing plate (for each signal less than the 2 standard).

EXAMPLE 3:

Manifold of 7 monostable e 3 bistable valves on which you want to interrupt signals 2-3 and 8-9.

Assembly:

- 1 monostable valve (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves.

Please note: the first 2 monostable of these are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.

- 1 additional power supply module,
- 3 bistable valves.

Please note: the first bistable of these valves is interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

Ordering code

2540.10.4A

Each Optyma-T manifold lets to manage 32 command signals for the valves.
Optyma-T serial nodes (CANopen ${ }^{\circledR}$, DeviceNet, PROFIBUS DP, EtherCAT ${ }^{\circledR}$, PROFINET IO RT,
EtherNet/IP and Powerlink) have a single pin for the power supply of the solenoid valves. So if you want to interrupt the power supply of one valve it is necessary to interrupt all the valves.
The additional power supply module lets to interrupt at the same time the first 4 available command signals for the valves after the module itself. The additional power supply module is particularly useful also when you use control signals that block the valves. This application is effective both with serial management and multi-pole connection of the manifolds.
This module is inserted directly into the Optyma-T solenoid valves manifold.

In particular this module is fitted with a M8 3 pins connector: +24 V , not connected, GND.

PIN	DESCRIPTION
1	+24 VDC
4	NOT CONNECTED
3	GND

This module uses an external power supply (+24 VDC) to manage the solenoid valves.

The output signal from serial node / multi-pole connection is used as command signal: when it is high the +24 VDC will be present at the module output.

If you want to cut off the power supply to a group of 4 valves it is sufficient to take away the +24 VDC provided to the module by the M8 connector.

Please note: It is possible to use more modules to interrupt all the command signals,
simply by inserting them before the signals to interrupt and after the signals already interrupted.

Usage examples:

EXAMPLE 1 :
Manifold of 12 monostable valves on which you want to interrupt signals 7-8-9-10
Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves. Please note: the first 4 monostable of these are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

EXAMPLE 2 :

Manifold of 12 monostable valves on which you want to interrupt signals 7-8-9
Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 3 monostable valves (interruptible),
- 1 closing plate mounted on a monostable base,
- 3 monostable valves (work correctly managed directly by the corresponding command signals).

Please note: Each additional power supply module interrupts always 4 electrical signals.
If you need to interrupt less than 4 signals you can:

- assemble the valves to interrupt in the last positions of the manifold, so you don't need to worry about the interrupted exceeding signals; - use a bistable base and mount a monostable valve (for each signal less than the 4 standard);
- use a monostable base and mount a closing plate (for each signal less than the 4 standard).

EXAMPLE 3 :

Manifold of 7 monostable e 3 bistable valves on which you want to interrupt signals 2-3-4-5 and 8-9-10-11.
Assembly:

- 1 monostable valve (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves.

Please note: the first 4 monostable of these are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

- 1 additional power supply module,
- 3 bistable valves.

Please note: the first 2 bistable of these valves are interruptible by the module, while the following will work correctly managed directly by the corresponding command signals.

Cable complete with connector, 37 Poles IP65

Coding: 2400.37.(.).C

Cable complete with connector, 25 Poles IP65

Coding: 2400.25.ㄴ. 25

(L)	CABLELENGTH
	$03=3$ meters
	$05=5$ meters
	$10=10$ meters

The electrical connection is achieved by a 37 pin connector and can manage up to 32 solenoid pilots. It is also possible use a 25 sub-D pin connector and, in this case, it is possible to manage a maximum of 22 outputs. The management and distribution of the electrical signals between each valve is obtained thanks to an electrical connector which receives the signals from the previous module, uses one, two or none depending on the type, and carries forward to the next module the remaining.
Bistable valves, $5 / 3$ and $2 \times 3 / 2$ valves which have two solenoid pilots built in, use two signals; the first is directed to the pilot side 14 the second to the pilot side 12. Modular bases can be fitted with two type of electrical connector: the monostable version uses only one signal (connected to the pilot side 14) and carries forward the remaining, the bistable version which always uses two signals.
This solution allows the modification of the manifold (replacement of monostable valves without bistable for example) without having to reset the PLC output layout.
On other hand this solution limits the maximum number of valves to 16 when it is used a 37 pin connector or 11 when it is used a 25 pin connector.
Intermediate supply/exhaust module uses an electrical connector directly forwarding signals to the next one without any kind of modification.
This allows the use of intermediate modules in any position of the manifold.
All the electrical signals that have not been used on the manifold can be used placing at the end of the manifold the end plate complete with the 25 sub-D female connector.
The number of available signals depends of the connector used to the type of the left end plate and by the total signals used along the manifold:
$\begin{array}{ll}37 \text { pin connector } & \text { nr of output }=32-\text { (total of used signals) } \\ 25 \text { pin connector } & \text { nr of output }=22-\text { (total of used signals) }\end{array}$
Following we show some examples of possible combination and the relative pin assignment.

37 PIN Connector correspondence for valves assembled on mixed bases

PIN 1 = PILOT 14 SV POS. 1 PIN 2 = PILOT 12 SV POS. 1 PIN 3 = PILOT 14 SV POS. 2 PIN 4 = PILOT 14 SV POS 3 PIN 5 = PILOT 14 SV POS. 4 PIN 6 = PILOT 12 SV POS. 4 PIN 7 = PILOT 14 SV POS. 5 PIN 8 = PILOT 14 SV POS .7 PIN 9 = PILOT 14 SV POS .8 PIN 10 = PILOT 14 SV POS .9 PIN 11 = PILOT 14 SV POS. 10 PIN $12=$ PILOT 14 SV POS. 11 PIN 13 = PILOT 12 SV POS. 11 PIN 14 = PILOT 14 SV POS. 12 PIN 15 = PILOT 12 SV POS. 12

37 PIN Connector correspondence for manifold mounted on bases for bistable valves

$$
\text { (1) (3) (4) (5) })_{(8)}^{(9)} \text { (1) (1) (1) (1) (1) (1) (1) (2) (2) }
$$

PIN 1 = PILOT 14 S POS. 1 PIN 2 = PILOT 12 SV POS. 1 PIN 3 = PILOT 14 SV POS. 2 PIN 4 = NOT CONNECTED PIN 5 = PILOT 14 SV POS. 3 PIN $6=$ NOT CONNECTED PIN 7 = PILOT 14 SV POS. 4 PIN $8=$ PILOT 12 SV POS. 4 PIN 9 = PILOT 14 SV POS. 5 PIN $10=$ NOT CONNECTED PIN 11 = PILOT 14 SV POS. 7 PIN $12=$ NOT CONNECTED PIN 13 = PILOT 14 SV POS. 8 PIN 14 = NOT CONNECTED PIN 15 = PILOT 14 SV POS. 9 PIN 16 = NOT CONNECTED PIN 17 = PILOT 14 SV POS. 10 PIN 18 = NOT CONNECTED PIN 19 = PILOT 14 SV POS. 11 PIN 20 = PILOT 12 SV POS. 11 PIN 21 = PILOT 14 SV POS. 12 PIN 22 = PILOT 12 SV POS. 12

37 PIN Connector correspondence for manifold for 32 position manifold with monostable valves on base

General :

Using the 2540.03.25P output terminal it is possible to make any electrical signals not used by valves available on a 25 sub-D female connector at the right end of the manifold.
It is possible to then join a multi-core cable to link to the next manifold, or connect directly to one or two I/O modules.
The I/O modules can accept input or output signals, depending upon what is connected.

Please note: If the manifold is connected by a multi-core connection, each connection can be used as either an input or an output, while if the manifold is connected to a serial node the connections can only be used as an output.

It is possible to connect the manifold to up to two I/O modules.
Each I/O module includes 8 diagnostic LEDs which indicate the presence of an Input / Output signal for each connector.

Please note: For an LED to function, a signal of at least +15VDC must be present on pin 4 of the connector. If this signal is lower, the LED will not light, this does not compromise the normal Input/ Output function of the unit.

Overall dimensions and I/O layout :

Input features:

Each connection can accept either two wire (switches, magnetic switches, pressure switches, etc.) or three wire connections (photocells, electronic end of stroke sensors, etc.) If +24 VDC is required on at Pin 1 of each connector, it is possible to provide this via the through-line pin of the multi-pole connector. I.E:

Pin 25 of the 25 pin multi-pole connector (code 2540.02.25P or 2540.12.25P)
Pin 36-37 of the 37 pin multi-pole connector (code 2540.02.37P or 2540.12.37P)

Output features:

A
Attention: The output connections are not protected against short-circuit. Please pay attention when wiring (avoid Pin 4 being connected to Pin 3 or Pin 1).

	Model	2540.08T
	Case	Reinforced technopolymer
	I/O Connector	M8 connector 3 poles female (IEC 60947-5-2)
	PIN 1 voltage (connector used as Input)	By the user
	PIN 4 voltage diagnosis	Green Led
	Node consumption (Outlets excluded)	7 mA per each LED with 24 VDC signal
	Outlets voltage	+23,3 VDC (serial)/by the user (multipolar)
	Input voltage	Depend by the using
	Maximum outlet current	100 mA (serial) / 400 mA (multipolar)
	Maximum Input/Output	8 per module
	Multiconnector max. Current	100 mA
	Connections to manifold	Direct connection to 25 poles connector
	Maximum n. of moduls	2
	Protection degree	IP65 when assembled
	Ambient temperature	from -0° to $+50^{\circ} \mathrm{C}$

CORRESPONDENCE BETWEEN MULTI-POLE SIGNAL AND CONNECTOR

Connection modes:

The I/O module changes it is operation depending on the way the manifold is controlled. There are two possible modes:
A) Control via multi-pole connection
B) Control via fieldbus

A) Control via multi-pole :

M8 connector used as Input:

In order to use the I/O module, the correct right hand endplate with 25 pole female outlet connector must be used.
(Code 2540.03.25P).

M8 connector used as Output:
Output voltage will the same as is applied at the multi-pole connector pin.
The maximum output current depends upon the power unit used, but we recommend no more than 250 mA .

Attention: Since every cable has a degree of resistance, there will always be a voltage drop depending on the cable's length, sectional area and the current.

Attention : Optyma 32-T solenoid valve manifolds permit up to 22 electrical signals that are not used by manifolds to be made available: these signals can be managed by another manifold and / or by I/O modules.
The I/O module will manage these unused signals. Connections that are not managing useful signals will remain unconnected.

Please note: Optyma 32-T solenoid valve manifolds manage up to 32 signals. If the manifold uses more than 24 signals the I/O module will manage only the remainder. Connections that are not managing useful signals will remain unconnected.

(1) (2) (3) (4)
(21) (22) 23

Attention:
Signal Not connected
GND Connected
Through line Connected

B) Control via fieldbus:

With this kind of control the I/O module can only be used as an output. Pin 1 of each connector is not connected. The output voltage will be 0.7 V lower than that applied to Pin 4 of the connector.
The maximum output current for each output is 100 mA . The correspondence between control byte and each single output depends on how many electrical signals are used by the manifold and by the relative position of the I/O module.

From the top

CUSTOMIZABLE
REMOVABLELABLES

Maximum possible size

Manual override actuation

Instable function: push to actuate (when released it moves back to the original position).

NOTE : It is strongly suggested to replace the original position after using
Valve Installation

NOTE: Torque moment 1 Nm

Manifold Layout configuration

MULTIPOINT CONNECTION

$$
\begin{aligned}
& \mathrm{MP}=\mathrm{PNP} 24 \mathrm{VDC} \\
& \mathrm{MN}=\mathrm{NPN} 24 \mathrm{VDC} \\
& \mathrm{MA}=24 \mathrm{VAC}
\end{aligned}
$$

LEFT ENDPLATE

A2 $=25$ poles - Self feeding
A3 $=37$ poles - Self feeding
$\mathrm{E} 2=25$ poles - External feeding
E3 $=37$ poles - External feeding

RIGHT ENDPLATE

U0 $=$ Closed
$\mathrm{U} 2=25$ Poles
U3 $=37$ Poles

I/O MODULE
M8
(Requires 25 poles right endplate)

MODUL CONFIGURATION

Valve type	Sub-base type
-	-

ACCESSORIES CONFIGURATION

SHORT CODE FUNCTION / CONNECTION :

A1 $=5 / 2$ Sol.-Spring + BASE 1 - CARTR. G1/8" GAS
A2 $=5 / 2$ Sol. - Spring + BASE $2-$ CARTR. G1/8" GAS
A3 $=5 / 2$ Sol.-Spring + BASE 1 - CARTR. $\varnothing 4$
A $4=5 / 2$ Sol.-Spring + BASE $2-$ CARTR. $\varnothing 4$
A5 $=5 / 2$ Sol.-Spring + BASE 1 - CARTR. $\varnothing 6$
A $6=5 / 2$ Sol.-Spring + BASE $2-$ CARTR. $\varnothing 6$
A7 $=5 / 2$ Sol.-Spring + BASE $1-$ CARTR. $\varnothing 8$
A $8=5 / 2$ Sol.-Spring + BASE $2-$ CARTR. $\emptyset 8$
B1 $=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. G1/8" GAS
B2 $=5 / 2$ Sol.-Diff. + BASE $2-$ CARTR. G1/8" GAS
B3 $=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. $\varnothing 4$
B4 $=5 / 2$ Sol.-Diff. + BASE 2 - CARTR. Ø4
B5 $=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. Ø6
B6 $=5 / 2$ Sol.-Diff. + BASE $2-$ CARTR. Ø6
$B 7=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. $\varnothing 8$
B8 $=5 / 2$ Sol.-Diff. + BASE $2-$ CARTR. Ø8
C2 $=5 / 2$ Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
C4 $=5 / 2$ Sol.-Sol. + BASE 2 - CARTR. $\varnothing 4$
C6 $=5 / 2$ Sol.-Sol. + BASE 2 - CARTR. Ø6
C8 $=5 / 2$ Sol.-Sol. + BASE 2 - CARTR. Ø8 E2 $=5 / 3$ CC Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
E4 $=5 / 3$ CC Sol.-Sol. + BASE $2-$ CARTR. $\varnothing 4$
E6 $=5 / 3$ CC Sol.-Sol. + BASE $2-$ CARTR. Ø6
$\mathrm{E} 8=5 / 3 \mathrm{CC}$ Sol.-Sol. + BASE 2 - CARTR. $\varnothing 8$

F2 $=2 \times 3 / 2$ NC-NC ($=5 / 3$ OC) Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
F4 $=2 \times 3 / 2$ NC-NC ($=5 / 3$ OC) Sol.-Sol. + BASE 2 - CARTR. Ø 4 F6 $=2 \times 3 / 2$ NC-NC ($=5 / 3$ OC) Sol.-Sol. + BASE 2 - CARTR. Ø6 F8 $=2 \times 3 / 2$ NC-NC ($=5 / 3$ OC) Sol.-Sol. + BASE $2-$ CARTR. Ø 8 G2 $=2 \times 3 / 2$ NO-NO ($=5 / 3$ PC) Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS G4 $=2 \times 3 / 2$ NO-NO $(=5 / 3 \mathrm{PC})$ Sol.-Sol. + BASE 2 - CARTR. Ø 4 G6 = $2 \times 3 / 2$ NO-NO ($=5 / 3$ PC) Sol.-Sol. + BASE 2 - CARTR. Ø6 $\mathrm{G} 8=2 \times 3 / 2 \mathrm{NO}-\mathrm{NO}(=5 / 3 \mathrm{PC})$ Sol.-Sol. + BASE $2-$ CARTR. $\varnothing 8$ $\mathrm{H} 2=2 \times 3 / 2 \mathrm{NC}-\mathrm{NO}$ Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS H4 = $2 \times 3 / 2$ NC-NO Sol.-Sol. + BASE $2-$ CARTR. Ø 4 H6 = $2 \times 3 / 2$ NC-NO Sol.-Sol. + BASE 2 - CARTR. Ø6 H8 $=2 \times 3 / 2$ NC-NO Sol.-Sol. + BASE 2 - CARTR. Ø8
$12=2 \times 3 / 2$ NO-NC Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
$14=2 \times 3 / 2$ NO-NC Sol.-Sol. + BASE 2 - CARTR. Ø 4
$16=2 \times 3 / 2$ NO-NC Sol.-Sol. + BASE 2 - CARTR. Ø6 $18=2 \times 3 / 2$ NO-NC Sol.-Sol. + BASE $2-$ CARTR. $\varnothing 8$
T1 = Free valve space plug + BASE $1-$ CARTR. G1/8" GAS
T2 = Free valve space plug + BASE $2-$ CARTR. G1/8" GAS
T3 $=$ Free valve space plug + BASE 1 - CARTR. $\varnothing 4$
T4 = Free valve space plug + BASE $2-$ CARTR. Ø4
T5 = Free valve space plug + BASE 1 - CARTR. $\varnothing 6$
T6 = Free valve space plug + BASE $2-$ CARTR. $\varnothing 6$
T7 = Free valve space plug + BASE 1 - CARTR. Ø8
T8 $=$ Free valve space plug + BASE $2-$ CARTR. $\varnothing 8$

NOTE:

While configuring the manifold always be careful that the maximum number of electrical signals available is 32.
The use of monostable valve mounted on a base type 2 (2 electrical signals occupied) causes the loss of one electric signal. In this case the monostable valve can be replaced by a bistable valve. The diaphragms plugs are used to intercept the conduits $1,3 \& 5$ of the base. If it is necessary to interrupt more than one conduit in the same time then put in line the letters which identifies the position (for exemple : regarding the 3 \& 5 conduits, put the Y \& Z letters).
Should one or more conduits be cut more than one time it is necessary to add the relevant intermediate Supply/Exhaust module.

ACCESSORIES

U 2	$=$ Power supply
	2 positions module
$\mathrm{U} 4=$	Power supply
	4 positions module
$\mathrm{W}=$	Intermediate supply
	\& exhaust module
$\mathrm{X}=$	Diaphragm plug
	on pipe 1
$\mathrm{Y}=$	Diaphragm plug
	on pipe 3

Z = Diaphragm plug on pipe 5
$X Y=$ Diaphragm plug on pipe 1 \& 3
ZX = Diaphragm plug on pipe 5 \& 1
ZY = Diaphragm plug on pipe 5 \& 3
ZXY = Diaphragm plug on pipe $5,1 \& 3$

Series $\mathbf{2 5 0 0}$ OPTYMA-T solenoid valve manifolds managed by multipoint connection are "well tried components"

F1	Well-tried component
B $_{10 \mathrm{~d}}$	50.000 .000

- The product is a well-tried product for a safety-related application according to ISO 13849-1.
- The relevant basic and well-tried safety principles according ISO 13849-2 for this product are fulfilled.
- The suitability of the product for a precise application must be verified and confirmed by the user.

General:

CANopen ${ }^{\circledR}$ module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.

Scheme / Overall dimensions and I/O layout :

M12 5P FEMALE DESCRIPTION Optional CAN Shield Optional CAN external positive supply

PIN	SIGNAL	DESCRIPTION
1	CAN_SHLD	Optional CAN Shield
2	CAN_V+	Optional CAN external positive supply (Dedicated for supply of transceiver and Optocouplers, if galvanic isolation of the bus node applies)
3	CAN_GND	Ground / OV / V-
4	CAN_H	CAN_H bus line (dominant high)
5	CAN_L	CAN_L bus line (dominant low)

	Model	5525.32 T
	Specifications	CiA Draft Standard Proposal 301 V 4.10 (15 August 2006)
	Case	Reinforced technopolymer
Power supply	Power supply connection	M12 4P male connector (IEC 60947-5-2)
	Power supply voltage	+24 VDC +/-10\%
	Node consumption (without inputs)	30 mA
	Power supply diagnosis	Green LED PWR
Outputs	PNP equivalent outputs	+24 VDC +/-10\%
	Maximum current for each output	100 mA
	Maximum output number	32
	Max output simultaneously actuated	32
Network	Network connectors	2 M12 5P connectors male-female Type A (IEC 60947-5-2)
	Baud rate	10-20-50-125-250-500-800-1000 Kbit/s
	Addresses, possible numbers	From 1 to 63
	Max nodes in net	64 (slave + master)
	Bus maximum recommended length	100 m at $500 \mathrm{Kbit} / \mathrm{s}$
	Bus diagnosis	Green LED + Red LED
	Configuration file	Available from our web site: http://www.pneumaxspa.com
	IP protection grade	IP65 when assembled
	Temperature range	From 0° to $+50^{\circ} \mathrm{C}$

General:

DeviceNet module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-T solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08T or a max number of 4 Input modules 5225.12T.
DeviceNet module recognizes automatically the presence of the Input modules on power on.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus DeviceNet is possible via 2 M12 5P male - female circular connectors; these two are connected in parallel and according to DeviceNet Specifications Volume I, release 2.0.
Transmission speed can be set by 3 dip-switches.
The node address can be set by 6 dip-switches using BCD numeration.
The module includes an internal terminating resistance that can be activated by a dip-switch.

Scheme / Overall dimensions and I/O layout :

NETWORK connectors

M12 5P FEMALE DESCRIPTION Optional CAN Shield
Optional CAN external positive supply

2	CAN_V+	(Dedicated for supply of transceiver and Optocouplers, if galvanic isolation of the bus node applies)
3	CAN_GND	Ground / OV / V-
4	CAN_H	CAN_H bus line (dominant high)
5	CAN_L	CAN_L bus line (dominant low)

	5425.32T
	DeviceNet Specifications Volume I, release 2.0.
	Reinforced technopolymer
nnection	M12 4P male connector (IEC 60947-5-2)
Itage	+24 VDC +/-10\%
ion (without inputs)	30 mA
agnosis	Green LED PWR
outputs	+24 VDC +/-10\%
nt for each output	100 mA
t number	32
Itaneously actuated	32
tors	2 M12 5P connectors male-female Type A (IEC 60947-5-2)
	125-250-500 Kbit/s
sible numbers	From 1 to 63
	64 (slave + master)
commended length	100 m at $500 \mathrm{Kbit} / \mathrm{s}$
	Green LED + Red LED
	Available from our web site: http://www.pneumaxspa.com
de	IP65 when assembled
	From 0° to $+50^{\circ} \mathrm{C}$

General:

PROFIBUS DP module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-T solenoid valves connected to node must be PNP equivalent (final 02 in ordering code). The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 8 Input modules 5225.08T or a max number of 8 Input modules 5225.12T.
PROFIBUS DP module recognizes automatically the presence of the Input modules on power on. Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus PROFIBUS DP is possible via 2 M12 type B 5P male - female circular connectors; these two are connected in parallel and according to PROFIBUS Interconnection Technology (Version 1.1 : August 2001)
The node address can be set using BCD numeration: 4 dip-switches for the units and 4 dipswitches for the tens.
The module includes an internal terminating resistance that can be activated by 2 dip-switches.

Scheme / Overall dimensions and I/O layout :

General:

EtherCAT ${ }^{\oplus}$ module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-T solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08T or a max number of 4 Input modules 5225.12T.
The EtherCAT ${ }^{\circledR}$ module, regardless the number of Input module connected, reports to have connected 4 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus EtherCAT ${ }^{\circledR}$ is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.
Note: 5700 series has a different configuration file from series 5600.

Scheme / Overall dimensions and I/O layout :

General :

PROFINET IO RT module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-T solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 8 Input modules 5225.08T or a max number of 8 Input modules 5225.12T.
The PROFINET IO RT module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus PROFINET IO RT is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

PIN	SIGNAL	DESCRIPTION
1	TX+	Ethernet Transmit High
2	RX +	Ethernet Receive High
3	TX-	Ethernet Transmit Low
4	RX-	Ethernet Receive Low

NETWORK connectors

M12 4P FEMALE

M12 4P FEMALE Ethernet Receive Low

5725.32T.PN

PROFINET IO RT
Reinforced technopolymer
M12 4P male connector (IEC 60947-5-2)
$+24 \mathrm{VDC}+/-10 \%$
400 mA
Green LED PWR / Green LED OUT
+24 VDC +/-10\%
100 mA

2 M12 4P female connectors Type D (IEC 61076-2-101)
Network

Model	5725.32 T.PN
Specifications	PROFINET IO RT
Case	Reinforced technopolymer
Power supply connection	M12 4P male connector (IEC 60947-5-2)
Power supply voltage	+24 VDC $+/-10 \%$
Node consumption (without inputs)	400 mA
Power supply diagnosis	Green LED PWR / Green LED OUT
PNP equivalent outputs	+24 VDC $+/-10 \%$
Maximum current for each output	100 mA
Maximum output number	32
Max output simultaneously actuated	32
Network connectors	2 M12 4P female connectors Type D (IEC 61076-2-101)
Baud rate	100 Mbit/s
Addresses, possible numbers	As an IP address
Max nodes in net	As an Ethernet Network
Maximum distance between 2 nodes	100 m
Bus diagnosis	1 green and 1 red LED for status + 4 LEDs for link \& activity
Configuration file	Available from our web site: http://www.pneumaxspa.com
IP protection grade	IP65 when assembled
Temperature range	From 0 ${ }^{\circ}$ to $+50^{\circ} \mathrm{C}$

General :

EtherNet/IP module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-T solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 8 Input modules 5225.08T or a max number of 8 Input modules 5225.12T.
The EtherNet/IP module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus EtherNet/IP is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General :

Powerlink module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-T solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 8 Input modules 5225.08T or a max number of 8 Input modules 5225.12T.
The Powerlink module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus Powerlink is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General :

Modbus/TCP module is directly integrated on Optyma-T solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-T solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 8 Input modules 5225.08T or a max number of 8 Input modules 5225.12T.
The Modbus/TCP module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus Modbus/TCP is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General :

Modules have 8 connectors M8 3P female.
The Inputs are PNP equivalent $24 \mathrm{VDC} \pm 10 \%$.
To each connector it is possible to plug both 2 wires Inputs (switches, magnetic switches pressure switches, etc) or 3 wires Inputs (proximity, photocells, electronic sensors, etc).
The maximum current available for all 8 Inputs is 300 mA .
Each module includes a 300 mA self-mending fuse. If a short circuit or a overcharge (overall current $>300 \mathrm{~mA}$) occur the safety device acts cutting the 24 VDC power supply to all M8 connectors on the module and switching off the green led PWR. Any other Input module connected to the node will remain powered and will function correctly.
Once the cause of the fault disappears the green LED PWR lights up indicating the ON state and the node will re-start to operate.
The maximum number of Input modules supported is 4 for CANopen ${ }^{\circledR}$, DeviceNet and EtherCAT ${ }^{\circledR}$.
The maximum number of Input modules supported is 8 for PROFIBUS DP, PROFINET IO RT EtherNet/IP and Powerlink.

Scheme / Overall dimensions and I/O layout :

Module 2 Module 1

Module 3 Module 2 Module 1

General :

Modules have 4 connectors M12 5P female.
The Inputs are PNP equivalent $24 \mathrm{VDC} \pm 10 \%$.
To each connector it is possible to plug both 2 wires Inputs (switches, magnetic switches pressure switches, etc) or 3 wires Inputs (proximity, photocells, electronic sensors, etc).
The maximum current available for all 8 Inputs is 300 mA .
Each module includes a 300 mA self-mending fuse. If a short circuit or a overcharge (overall current $>300 \mathrm{~mA}$) occur the safety device acts cutting the 24 VDC power supply to all M8 connectors on the module and switching off the green led PWR. Any other Input module connected to the node will remain powered and will function correctly.
Once the cause of the fault disappears the green LED PWR lights up indicating the ON state and the node will re-start to operate.
The maximum number of Input modules supported is 4 for CANopen ${ }^{\circledR}$, DeviceNet and EtherCAT ${ }^{\circledR}$.
The maximum number of Input modules supported is 8 for PROFIBUS DP, PROFINET IO RT EtherNet/IP and Powerlink.

Scheme / Overall dimensions and I/O layout :

Module 2 Module 1

PIN	DESCRIPTION
1	+24 VDC
2	INPUT B
3	GND
4	INPUT A
5	NC

Module 3 Module 2 Module 1

General :

This module is fitted with two M8 3 pin female connectors.
With this module is possible to read two analogue inputs (voltage or current).
The inputs are sampled at 12 bit.
For practicality the sampled value is transmitted with 16 bit, of which the four less significant are fixed at zero.

Available models:
5225.2T.00T (voltage signal 0-10V);
5225.2T.01T (voltage signal 0-5V);
5225.2C.00T (current signal 4-20mA);
5225.2C.01T (current signal 0-20mA).

Each module includes a 300 mA self-mending fuse. Should a short circuit or a overcharge (overall current $>300 \mathrm{~mA}$) occur the safety device intervenes cutting the 24VDC power supply to all M8 connectors on the module and switching off the green LED PWR. Any other Input module connected to the node will remain powered and will function correctly. Once the cause of the fault is removed the green LED lights up indicating the ON state and the node will re-start to operate.

This module is counted as four 8 digital Inputs modules.
The Maximum number of 2 analogue Inputs modules supported is 1 for CANopen ${ }^{\circledR}$, DeviceNet, PROFIBUS DP and EtherCAT ${ }^{\circledR}$.
The Maximum number of 2 analogue Inputs modules supported is 2 for PROFINET IO RT, EtherNet/IP and Powerlink.

Scheme / Overall dimensions and I/O layout :

Module 2 Module 1

PIN	DESCRIPTION
1	+24 VDC
4	INPUT
3	GND

General :

This module is fitted with two M8 3 pin female connectors.
With this module is possible to read two Pt 100 probes.
The inputs are sampled at 12 bit.
For practicality the sampled value is transmitted with 16 bit, of which the four less significant are fixed at zero.

It is possible to plug 3-wires probes or 2-wires probes.
The temperature is expressed in tenths of degree.
The temperature range is $0-250^{\circ} \mathrm{C}$, beyond which the green LED for probe presence doesn't light on.
The module returns a value correspondent to $250^{\circ} \mathrm{C}$ when the probe is not connected.
Available models:
5225.2P.00T (2-wires probes);
5225.2P.01T (3-wires probes).

Each module includes a 300 mA self-mending fuse. Should a short circuit or a overcharge (overall current $>300 \mathrm{~mA}$) occur the safety device intervenes cutting the 24VDC power supply to all M8 connectors on the module and switching off the green LED PWR. Any other Input module connected to the node will remain powered and will function correctly.
Once the cause of the fault is removed the green LED lights up indicating the ON state and the node will re-start to operate.
This module is counted as four 8 digital Inputs modules.
The Maximum number of 2 Pt100 Inputs modules supported is 1 for CANopen ${ }^{\circledR}$, DeviceNet, PROFIBUS DP and EtherCAT ${ }^{\circledR}$.
The Maximum number of 2 Pt100 Inputs modules supported is 2 for PROFINET IO RT, EtherNet/IP and Powerlink.

Scheme / Overall dimensions and I/O layout :

General :

This module is fitted with two M8 3 pin female connectors.
With this module is possible to read two Pt100 probes.
The inputs are sampled at 12 bit.
For practicality the sampled value is transmitted with 16 bit, of which the four less significant are fixed at zero.

It is possible to plug 3-wires probes or 2-wires probes.
The temperature is expressed in points according to the formula

$$
\text { Temperature }=\left(\frac{\text { Points }}{4095} \times 600\right)-200
$$

The temperature range is -200 to $+400^{\circ} \mathrm{C}$, beyond which the green LED for probe presence doesn't light on.
The module returns a value correspondent to $400^{\circ} \mathrm{C}$ when the probe is not connected.
Available models:
5225.2P.10T (2-wires probes);
5225.2P.11T (3-wires probes).

Each module includes a 300 mA self-mending fuse. Should a short circuit or a overcharge (overall current $>300 \mathrm{~mA}$) occur the safety device intervenes cutting the 24VDC power supply to all M8 connectors on the module and switching off the green LED PWR. Any other INPUT module connected to the node will remain powered and will function correctly.
Once the cause of the fault is removed the green LED lights up indicating the ON state and the node will re-start to operate.
This module is counted as four 8 digital Inputs modules.
The Maximum number of 2 Pt100 Inputs modules supported is 1 for CANopen ${ }^{\oplus}$, DeviceNet, PROFIBUS DP and EtherCAT ${ }^{\circledR}$.
The Maximum number of 2 Pt100 Inputs modules supported is 2 for PROFINET IO RT, EtherNet/IP and Powerlink.

Scheme / Overall dimensions and I/O layout :

Module 2 Module 1

2 WIRES	
PIN	DESCRIPTION
1	RT (white)
4	NC
3	RL (red)

POWER SUPPLY connector

Socket for Power Supply STRAIGHT CONNECTOR M12A 4P FEMALE

Ordering code

 5312A.F04.00NETWORK connectors
Plug for Bus CANopen ${ }^{\circledR} /$ DeviceNet STRAIGHT CONNECTOR M12A 5P MALE

Ordering code

5312A.M05.00

Upper view Slave connector

Upper view
Slave connecto

Plug for Input module STRAIGHT CONNECTOR M8 3P MALE

Ordering code 5308A.M03.00

INPUT connectors
Upper view
Slave connector

PIN	DESCRIPTION
1	+24 VDC
4	INPUT
3	GND

Plug for Input module STRAIGHT CONNECTOR M12A 5P MALE

Ordering code

5312A.M05.00

Manifold Layout configuration

LEFT ENDPLATE

A3 $=37$ poles - Self feeding
E3 $=37$ poles - External feeding

INPUT MODULES

A = No module
D1 $=8$ M8 digital inputs module
$\mathrm{D} 2=8 \mathrm{M} 12$ digital inputs module
$\mathrm{T} 1=2$ analogue inputs $0-5 \mathrm{~V}$ module
$\mathrm{T} 2=2$ analogue inputs $0-10 \mathrm{~V}$ module
$\mathrm{C} 1=2$ analogue inputs $0-20 \mathrm{~mA}$ module
$\mathrm{C} 2=2$ analogue inputs $4-20 \mathrm{~mA}$ module
P1 = 2 Pt100 inputs 2 wires module
$\mathrm{P} 2=2 \mathrm{Pt} 100$ inputs 3 wires module
$\mathrm{E} 1=2$ Pt100 inputs 2 wires module extended range
$\mathrm{E} 2=2$ Pt100 inputs 3 wires module extended range

RIGHT ENDPLATE

$$
\begin{aligned}
\mathrm{U} 0 & =\text { Closed } \\
\text { U2 } & =25 \text { Poles } \\
\text { U3 } & =37 \text { Poles }
\end{aligned}
$$

MODULE CONFIGURATION

ACCESSORIES CONFIGURATION

SHORT CODE FUNCTION / CONNECTION :

A1 $=5 / 2$ Sol.-Spring + BASE $1-$ CARTR. G1/8" GAS
A2 $=5 / 2$ Sol.-Spring + BASE $2-$ CARTR. G1/8" GAS
$A 3=5 / 2$ Sol.-Spring + BASE 1 - CARTR. $\varnothing 4$
A4 $=5 / 2$ Sol.-Spring + BASE 2 - CARTR. $\varnothing 4$
$A 5=5 / 2$ Sol.-Spring + BASE $1-$ CARTR. $\varnothing 6$
A6 $=5 / 2$ Sol.-Spring + BASE $2-$ CARTR. $\varnothing 6$
A7 $=5 / 2$ Sol.-Spring + BASE $1-$ CARTR. $\varnothing 8$
A8 $=5 / 2$ Sol.-Spring + BASE $2-$ CARTR. Ø8
B1 $=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. G1/8" GAS
B2 $=5 / 2$ Sol.-Diff. + BASE $2-$ CARTR. G1/8" GAS
$B 3=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. Ø4
$B 4=5 / 2$ Sol.-Diff. + BASE $2-$ CARTR. Ø4
B5 $=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. Ø6
$B 6=5 / 2$ Sol.-Diff. + BASE $2-$ CARTR. Ø6
B7 $=5 / 2$ Sol.-Diff. + BASE 1 - CARTR. Ø8
$B 8=5 / 2$ Sol.-Diff. + BASE $2-$ CARTR. Ø8
$\mathrm{C} 2=5 / 2$ Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
C4 $=5 / 2$ Sol.-Sol. + BASE 2 - CARTR. Ø4
C6 $=5 / 2$ Sol.-Sol. + BASE 2 - CARTR. Ø6
C8 $=5 / 2$ Sol.-Sol. + BASE 2 - CARTR. Ø8
$\mathrm{E} 2=5 / 3$ CC Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
$\mathrm{E} 4=5 / 3 \mathrm{CC}$ Sol.-Sol. + BASE 2 - CARTR. Ø4
$E 6=5 / 3$ CC Sol.-Sol. + BASE $2-$ CARTR. Ø6
$E 8=5 / 3$ CC Sol.-Sol. + BASE $2-$ CARTR. Ø8

F2 $=2 \times 3 / 2$ NC-NC ($=5 / 3 \mathrm{OC}$) Sol. - Sol. + BASE $2-$ CARTR. G1/8" GAS
F4 $=2 \times 3 / 2$ NC-NC $(=5 / 3$ OC) Sol.-Sol. + BASE $2-$ CARTR. Ø 4
F6 = 2x3/2 NC-NC ($=5 / 3$ OC) Sol.-Sol. + BASE 2 - CARTR. Ø6
F8 $=2 \times 3 / 2$ NC-NC $(=5 / 3 \mathrm{OC})$ Sol.-Sol. + BASE $2-$ CARTR. Ø8
$\mathrm{G} 2=2 \times 3 / 2$ NO-NO (=5/3 PC) Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
G4 $=2 \times 3 / 2$ NO-NO ($=5 / 3 \mathrm{PC}$) Sol.-Sol. + BASE 2 - CARTR. Ø4
G6 = 2x3/2 NO-NO (=5/3 PC) Sol.-Sol. + BASE 2 - CARTR. Ø6
G8 $=2 \times 3 / 2$ NO-NO $(=5 / 3$ PC) Sol.-Sol. + BASE 2 - CARTR. Ø8
$\mathrm{H} 2=2 \times 3 / 2$ NC-NO Sol.-Sol. + BASE 2 - CARTR. G1/8" GAS
$\mathrm{H} 4=2 \times 3 / 2$ NC-NO Sol.-Sol. + BASE 2 - CARTR. Ø4
$\mathrm{H} 6=2 \times 3 / 2$ NC-NO Sol.-Sol. + BASE 2 - CARTR. Ø6
$\mathrm{H} 8=2 \times 3 / 2$ NC-NO Sol.-Sol. + BASE 2 - CARTR. Ø8
I2 $=2 \times 3 / 2$ NO-NC Sol.-Sol. + BASE $2-$ CARTR. G1/8" GAS
$14=2 \times 3 / 2$ NO-NC Sol.-Sol. + BASE 2 - CARTR. Ø 4
I6 = $2 \times 3 / 2$ NO-NC Sol.-Sol. + BASE 2 - CARTR. $\varnothing 6$
I8 = 2x3/2 NO-NC Sol.-Sol. + BASE 2 - CARTR. Ø8
T1 = Free valve space plug + BASE $1-$ CARTR. G1/8" GAS
T2 = Free valve space plug + BASE 2 - CARTR. G1/8" GAS
T3 $=$ Free valve space plug + BASE 1 - CARTR. Ø4
T4 = Free valve space plug + BASE 2 - CARTR. Ø4
T5 $=$ Free valve space plug + BASE 1 - CARTR. Ø6
T6 = Free valve space plug + BASE 2 - CARTR. Ø6
T7 $=$ Free valve space plug + BASE 1 - CARTR. $\varnothing 8$
T8 $=$ Free valve space plug + BASE $2-$ CARTR. Ø8

NOTE:

While configuring the manifold always be careful that the maximum number of electrical signals available is 32 .
The use of monostable valve mounted on a base type 2 (2 electrical signals occupied) causes the loss of one electric signal. In this case the monostable valve can be replaced by a bistable valve. The diaphragms plugs are used to intercept the conduits $1,3 \& 5$ of the base. If it is necessary to interrupt more than one conduit in the same time then put in line the letters which identifies the position (for exemple : regarding the 3 \& 5 conduits, put the Y \& Z letters).
Should one or more conduits be cut more than one time it is necessary to add the relevant intermediate Supply/Exhaust module.

ACCESSORIES

$Z=$ Diaphragm plug on pipe 5
$X Y=$ Diaphragm plug on pipe $1 \& 3$
ZX = Diaphragm plug on pipe 5 \& 1
ZY = Diaphragm plug on pipe 5 \& 3
ZXY = Diaphragm plug on pipe 5,1 \& 3

																							-	-	-	-	-	-		-					

$+-$
$-\quad-\quad$

